4. You are on the beach in Wasaga Beach, Ontario. At 2:00 PM on June 15th, the tide is high. At that time you find that the depth at the end of the pier is 1.5 meters. At 8:00 pm the same day, the tide is low, and you find that the depth of the water is 1.1 meters. Assuming the depth of the water varies sinusoidally with time a) Identify the key features (max, min, amplitude, period, equation of sinusoidal axis) of the sinusoidal function, and use them to sketch a graph showing two tide cycles. b) Determine an equation to represent the tide in Wasaga Beach. c) Determine the height of the water at 11:00 PM the same day. d) Determine the first two times after high tide where the height of the water is 1.2 metres.