Find the following limits, show ALL your work. When the limit does not exist, justify why not. If the function is growing or decreasing without bound, capture that behavior using too. If you apply L'Hospital's Rule you must justify your use by first stating the indeterminate form. Anwar (8 pts-2 ea) 5. lim- |x-3 4. lim x-x┬▓7x+12 sinx-x X-40 7x┬▓ - from left sinca)-0 7(0)┬│ K-31 CA!+ [sin(x)-x] x -7x+12 7me I = Amo lim -/+ Cos(x) 7 716 3x2 2.9 реж резреж 17. 1/2 // -1+ Cost _ - 1 + cos(0); 3x0 = рео.резрез рен.резрезрежреж реи.резрезрез реж.резрезрезрежрежреж 2.9999 0.9999 2.99999 0.999991 xt 3 201┬▓ dau lo 7 3440 = ==//im-Sinx dax (x┬▓) 2 as x approaches 3 from ┬╖lim -Sin(x) - Sin(e) Ix-x] *10 X left side, the function values. approach 1, This the limit of. as x approaches 3 from left is 1 x┬▓=7x+12 2H 1. 1. lim dyda [-sinca)] = 1/2 1/2 1/2-1 ces (5 x1x1 d/dx [x] 1/2-1/2-1/2--1 cas(0) - ) /тВБ2--| costits-Cosic 7. lim(1-3x) 5 1m en ((1-3x) *) _ / /^/^ (1-3 lime' *10 44 6. lim x-+0 In(1-3x) elim X-0 x Lospitallow= ┬▓ 4 %* se [#lim In (1-3x) = ('Him [In (1-3x)]