In group theory, you met the six-element abelian group Z2 X Z3 = {(0,0,(0,1),(0,2),(1,0),(1,1),(1,2)} with group operation given by componentwise addition (mod 2 in the first component and mod 3 in the second component). In this question you are going to investigate ways in which this could be equipped with a multiplication making it into a ring. (a) Using the fact that (1,0) +(1,0) = (0,0), show that (1,0)(1,0) is either (1,0) or (0,0). (Hint: you could use the previous question.) (b) What does the fact that (0,1)+(0,1)+(0,1) = (0,0) tell you about the possible values of (0,1)0,1)? (c) What are the possible values of (1,00,1)? (d) Does there exist a field with 6 elements? 3. Let R be a ring and a, b ϵ R. Show that (a) if a + a = 0 then ab + ab = 0 (b) if b + b = 0 and Ris commutative then (a + b) ² = a² + b².