For A = [1 - 2 4 1 - 2 4 1 - 2 4] find one eigenvalue, with no calculation. Justify your answer.
Choose the correct answer below.
A. One eigenvalue of A is λ = -2. This is because each column of A is equal to the product of 2 and the column to the left of it.
B. One eigenvalue of A is λ = 0. This is because the columns of A are linearly dependent, so the matrix is not invertible.
C. One eigenvalue of A is λ = 1. This is because each row of A is equal to the product of 1 and the row above it.
D. One eigenvalue of A is λ = 1. This is because 1 is one of the entries on the main diagonal of A, which are the eigenvalues of A.