(Representing Subspaces As Solutions Sets of Homogeneous Linear Systems; the problem requires familiarity with the full text of the material entitled "Subspaces: Sums and Intersections" on the course page). Let 2 1 2 0 G 0 and d d₂ ,dy = -14 6 13 7 let L1 Span(1,2,3), and let L2 = Span(d1, d2, da). (i) Form the matrix a C = whose rows are the transposed column vectors . (a) Take the matrix C to reduced row echelon form; (b) Use (a) to find a basis for L₁ and the dimension dim(L1) of L₁; (c) Use (b) to find a homogeneous linear system S₁ whose solution set is equal to L₁. (ii) Likewise, form the matrix (d₂T D = |d₂¹ d₂ whose rows are the transposed column vectors d and perform the steps (a,b,c) described in the previous part for the matrix D and the subspace L2. As before, let S₂ denote a homogeneous linear system whose solution set is equal to L2. (iii) (a) Find the general solution of the combined linear system S₁ U S2: (b) use (a) to find a basis for the intersection L₁ L₂ and the dimension of the intersection L₁ L2; (c) use (b) to find the dimension of the sum L1 + L2 of L1 and L₂. Present your answers to the problem in a table of the following form Subproblem Ans wers (i) (a) Reduced row echelon form of the matrix C; (b) Basis for L1, the dimension of L₁; (c) Homogeneous linear system S₁. (ii) (a) Reduced row echelon form of the matrix D; (b) Basis for L2, the dimension of L2; (c) Homogeneous linear system S₂. (a) General solution of the system S₁ US₂: (b) Basis for L₁ L2; (c) Dimension of L1 + L₂. = T 3