In class, we modeled growth in an economy by a growing population. We could also achieve a growing economy by having an endowment that increases over time. To see this, consider the following economy. Let the number of young people born in each period be constant at N. There is a constant stock of fiat money, M. Each young person born in period t is endowed with yt units of the consumption good when young and nothing when old. The individual endowment grows over time so that yt ayt-1, where a > 1. For simplicity, assume that in each period t, young people desire to hold real money balances equal to one-half of their endowment. = (a) Find the rate of return of money in this economy. Explain your results. (b) How could the government achieve a rate of return of 1 in this economy? Explain your results. (c) Now assume that the population changes over time. At what rate would it need to increase or decrease, in order for the rate of return on money to be equal to 1, assuming constant money supply? Explain your results.