The directed line segment, AB¯, contains the points A(−2,6)
 and B(4,−6).
What are the coordinates of the point that partitions AB¯ according to the part-to-part ratio 2:4?

Respuesta :

Answer:

The coordinate of the point is; (0,2)

Step-by-step explanation:

The given line segment has points with coordinates  A(−2,6)

and B(4,−6).

We want to find a point (x,y) that divides this line segment in the ratio:

m:n=2:4

The x-coordinate of this point is given by;

[tex]x=\frac{mx_2+nx_1}{m+n}[/tex]

We substitute [tex]x_1=-2,x_2=4,m=2,n=4[/tex]

[tex]\implies x=\frac{2*4+4*-2}{2+4}[/tex]

[tex]\implies x=\frac{8-8}{6}=0[/tex]

The y-coordinate of this point is given by;

[tex]y=\frac{my_2+ny_1}{m+n}[/tex]

We substitute [tex]y_1=6,y_2=-6,m=2,n=4[/tex]

[tex]\implies y=\frac{2*-6+4*6}{2+4}[/tex]

[tex]\implies y=\frac{-12+24}{6}=2[/tex]

The coordinate of the point is; (0,2)