Respuesta :
Given that f(x)=x^2+7 and g(x)=x+3/x
then
(g°f)(x)
=(x^2+7)+3/(x^2+7)
hence:
(g°f)(-5)=[(-5)^2+7]+3/[(-5)^2+7]
=[25+7]+3/[25+7]
=32+3/32
=32 3/32
then
(g°f)(x)
=(x^2+7)+3/(x^2+7)
hence:
(g°f)(-5)=[(-5)^2+7]+3/[(-5)^2+7]
=[25+7]+3/[25+7]
=32+3/32
=32 3/32
Answer:
[tex]\implies \bf\frac{35}{32}[/tex]
Step-by-step explanation:
The function f(x) is given to be : f(x) = x² + 7
Also, The function g(x) is given to be :
[tex]g(x) = \frac{x+3}{x}[/tex]
We need to find : (gof)(-5)
⇒ g(f(-5))
⇒ g((-5)² + 7)
⇒ g(32)
[tex]\implies \frac{35}{32}[/tex]