Answer:
Part 1)
Part a) [tex]b=10.57\ units[/tex]
Part b) [tex]a=22.66\ units[/tex] (three different ways in the procedure)
Part 2)
First triangle (triangle a)
Part a) [tex]c=1.35\ units[/tex]
Part b) [tex]A=35.11\°[/tex]
Part c) [tex]B=129.89\°[/tex]
Second triangle (triangle b)
Part a) [tex]A=83\°[/tex]
Part b) [tex]AC=10.77\ units[/tex]
Part c) [tex]BC=15.11\ units[/tex]
Step-by-step explanation:
Part 1)
Part A
we know that
In the right triangle ABC
[tex]sin(B)=\frac{AC}{AB}[/tex]
we have
[tex]B=25\°[/tex]
[tex]AC=b\ units[/tex]
[tex]AB=25\ units[/tex]
Substitute and solve for b
[tex]sin(25\°)=\frac{b}{25}[/tex]
[tex]b=25*sin(25\°)=10.57\ units[/tex]
Part B
First way
we know that
In the right triangle ABC
[tex]cos(B)=\frac{BC}{AB}[/tex]
we have
[tex]B=25\°[/tex]
[tex]BC=a\ units[/tex]
[tex]AB=25\ units[/tex]
Substitute and solve for a
[tex]cos(25\°)=\frac{a}{25}[/tex]
[tex]a=25*cos(25\°)=22.66\ units[/tex]
Second way
Applying the Pythagoras theorem
[tex]c^{2}=a^{2} +b^{2}[/tex]
we have
[tex]c=25\ units[/tex]
[tex]b=10.57\ units[/tex]
substitute and solve for a
[tex]25^{2}=a^{2} +10.57^{2}[/tex]
[tex]a^{2}=25^{2}-10.57^{2}[/tex]
[tex]a=22.66\ units[[/tex]
Third way
we know that
In the right triangle ABC
[tex]tan(B)=\frac{AC}{BC}[/tex]
we have
[tex]B=25\°[/tex]
[tex]BC=a\ units[/tex]
[tex]AC=b=10.57\ units[/tex]
substitute and solve for a
[tex]tan(25\°)=\frac{10.57}{a}\\ \\a=10.57/ tan(25\°)\\ \\a=22.66\ units[/tex]
Part 2)
triangle a
we have
[tex]C=15\°[/tex]
[tex]a=3\ units[/tex]
[tex]b=4\ units[/tex]
Step 1
Find the measure of length side c
Applying the law of cosines
[tex]c^{2}=a^{2}+b^{2}-2(a)(b)cos(C)[/tex]
substitute
[tex]c^{2}=3^{2}+4^{2}-2(3)(4)cos(15\°)[/tex]
[tex]c^{2}=25-24cos(15\°)[/tex]
[tex]c=1.35\ units[/tex]
Step 2
Find the measure of angle A
Applying the law of sines
[tex]\frac{a}{sin(A)}=\frac{c}{sin(C)}[/tex]
we have
[tex]a=3\ units[/tex]
[tex]c=1.35\ units[/tex]
[tex]C=15\°[/tex]
substitute and solve for A
[tex]\frac{3}{sin(A)}=\frac{1.35}{sin(15\°)}\\ \\sin(A)=3*sin(15\°)/1.35\\ \\sin(A)=0.5752\\ \\A=35.11\°[/tex]
Step 3
Find the measure of angle B
Remember that the sum of the internal angles of a triangle must be equal to [tex]180[/tex] degrees
so
[tex]A+B+C=180\°[/tex]
we have
[tex]C=15\°[/tex]
[tex]A=35.11\°[/tex]
substitute
[tex]B=180\°-35.11\°-15\°=129.89\°[/tex]
triangle b
we have
[tex]C=52\°[/tex]
[tex]B=45\°[/tex]
[tex]c=12\ units[/tex]
Step 1
Find the measure of angle A
Remember that the sum of the internal angles of a triangle must be equal to [tex]180[/tex] degrees
so
[tex]A+B+C=180\°[/tex]
we have
[tex]C=52\°[/tex]
[tex]B=45\°[/tex]
substitute
[tex]A=180\°-52\°-45\°=83\°[/tex]
Step 2
Find the measure of side AC
Applying the law of sines
[tex]\frac{b}{sin(B)}=\frac{c}{sin(C)}[/tex]
we have
[tex]b=AC[/tex]
[tex]c=12\ units[/tex]
[tex]B=45\°[/tex]
[tex]C=52\°[/tex]
substitute and solve for b
[tex]\frac{b}{sin(45\°)}=\frac{12}{sin(52\°)}\\ \\b=12*sin( 45\°)/sin( 52\°)\\ \\b=10.77\ units[/tex]
Step 3
Find the measure of side BC
Applying the law of sines
[tex]\frac{a}{sin(A)}=\frac{c}{sin(C)}[/tex]
we have
[tex]a=BC[/tex]
[tex]c=12\ units[/tex]
[tex]A=83\°[/tex]
[tex]C=52\°[/tex]
substitute and solve for a
[tex]\frac{a}{sin(83\°)}=\frac{12}{sin(52\°)}\\ \\a=12*sin(83\°)/sin(52\°)\\ \\a=15.11\ units[/tex]