Respuesta :

A. 10.3 assuming that 113.1 is given

Answer:

Option A  is correct.

Step-by-step explanation:

Given:

AG = 6 ft ⇒ Radius of the circle , r = 6 ft

⇒ GB = AG = 6 ft

To find: Area of shaded Segment.

Area of Shaded Segment  = Area of Sector AGBA - Area of Δ AGB

Sector AGBA forming 90° angle at center. [tex]\implies\,\theta=90^{\circ}[/tex]

Area of Sector = [tex]\frac{\theta}{360}\times\pi r^2[/tex]

Area of Sector AGBA = [tex]\frac{90}{360}\times3.14\times6^2[/tex]

                                   = [tex]\frac{1}{4}\times3.14\times36[/tex]

                                   = [tex]28.26\:ft^2[/tex]

ΔAGB is a right angled triangle.

So, Area of ΔAGB = [tex]\frac{1}{2}\times AG\times GB[/tex]

                              = [tex]\frac{1}{2}\times6\times6[/tex]

                              = [tex]6\times3[/tex]

                              = [tex]18\:ft^2[/tex]

Area of Shaded Segment  = 28.26 - 18 = 10.26 ≈ 10.3 ft²

Therefore, Option A  is correct.