Respuesta :
5x^2 + 8x + 4 = 0 is a quadratic. a=5, b=8 and c=4
Thus,
-8 plus or minus sqrt( 8^2-4(5)(4) )
x = ------------------------------------------------
2(5)
-8 plus or minus sqrt(64-80)
= ---------------------------------------------
10
-8 plus or minus sqrt(-16) -8 plus or minus i*4
= -------------------------------------- = -----------------------------
10 10
-4 plus or minus i*2
= ------------------------------ Can you now choose the correct answer?
5
Thus,
-8 plus or minus sqrt( 8^2-4(5)(4) )
x = ------------------------------------------------
2(5)
-8 plus or minus sqrt(64-80)
= ---------------------------------------------
10
-8 plus or minus sqrt(-16) -8 plus or minus i*4
= -------------------------------------- = -----------------------------
10 10
-4 plus or minus i*2
= ------------------------------ Can you now choose the correct answer?
5
Answer:
The solutions to the quadratic equation are:
[tex]x=-\frac{4}{5}+i\frac{2}{5},\:x=-\frac{4}{5}-i\frac{2}{5}[/tex]
Step-by-step explanation:
Complex numbers are numbers of the form [tex]a+bi[/tex], where [tex]a[/tex] and [tex]b[/tex] are real numbers.
For a quadratic equation of the form [tex]ax^2+bx+c=0[/tex] the solutions are
[tex]x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]
If [tex]b^2-4ac<0[/tex], the equation has two complex solutions that are not real.
Quadratic equations with a negative discriminant have no real number solution. However, if we extend our number system to allow complex numbers, quadratic equations will always have a solution.
This quadratic equation [tex]5x^2\:+\:8x\:+\:4\:=\:0[/tex] is not factorable, so we apply the quadratic formula.
[tex]\mathrm{For\:}\quad a=5,\:b=8,\:c=4\\\\x_{1,\:2}=\frac{-8\pm \sqrt{8^2-4\cdot \:5\cdot \:4}}{2\cdot \:5}\\[/tex]
[tex]x_1=\frac{-8+\sqrt{8^2-4\cdot \:5\cdot \:4}}{2\cdot \:5}=\frac{-8+\sqrt{16}i}{2\cdot \:5}=-\frac{4}{5}+\frac{2}{5}i[/tex]
[tex]x_2=\frac{-8-\sqrt{8^2-4\cdot \:5\cdot \:4}}{2\cdot \:5}=\frac{-8-\sqrt{16}i}{10}=-\frac{4}{5}-\frac{2}{5}i[/tex]
The solutions to the quadratic equation are
[tex]x=-\frac{4}{5}+i\frac{2}{5},\:x=-\frac{4}{5}-i\frac{2}{5}[/tex]