Notice that 45 is 1 standard deviation below the mean. Recall that, for a normally distributed random variable [tex]X[/tex],
[tex]\mathbb P(|X-\mu|\le\sigma)=\mathbb P(\mu-\sigma\le X\le\mu+\sigma)\approx0.68[/tex]
[tex]\mathbb P(60-15\le X\le60+15)\approx0.68[/tex]
Since the normal distribution is symmetric about its mean, we have
[tex]\mathbb P(60-15\le X\le60)\approx0.34[/tex]
Also by virtue of symmetry, we have
[tex]\mathbb P(X\ge60)=0.50[/tex]
So,
[tex]\mathbb P(X\ge45)=\mathbb P(45\le X\le60)+\mathbb P(X\ge60)\approx0.84[/tex]
making the answer, C.