Respuesta :

The answer is going to be in the picture because trying to make fractions with this is too difficult. :D

Ver imagen kaydenceskyem

Answer:

[tex]x = \frac{5 \pm \sqrt{ 65 }}{-4}[/tex].

Step-by-step explanation:

The Quadratic Formula for a second degree polynomial [tex]ax^{2} +bx+c=0[/tex] is a formula for the values of its solution i.e. for finding the values of x.

It is given by, [tex]x = \frac{-b \pm\sqrt{b^{2}-4ac }}{2a}[/tex].

Now, we have the given quadratic equation [tex]-2x^{2}-5x+5 = 0[/tex],

which gives a = -2 , b = -5 , c = 5.

Substituting the value of a, b , c in the above formula, we get

[tex]x = \frac{-(-5) \pm \sqrt{(-5)^{2} -4 \times (-2) \times 5 }}{2 \times (-2)}[/tex].

[tex]x = \frac{-(-5) \pm \sqrt{ 25 + 40 }}{-4}[/tex].

[tex]x = \frac{5 \pm \sqrt{ 65 }}{-4}[/tex].

Hence, the solution of the given quadratic equation is [tex]x = \frac{5 \pm \sqrt{ 65 }}{-4}[/tex].