Consider the quadratic equation ax^2+bx+c where a,b, and c are rational numbers and the quadratic has two distinct zeros. If one is rational, what is true for the other zeros

Respuesta :

The other root must also be rational. Suppose one root is [tex]\dfrac pq[/tex]. Then we can write

[tex]ax^2+bx+c=a\left(x-\dfrac p{aq}\right)\left(x-\dfrac ra\right)[/tex]

where [tex]\dfrac ra[/tex] is the other unknown root. Expanding, we get

[tex]ax^2+bx+c=ax^2-a\left(\dfrac p{aq}+\dfrac ra\right)x+\dfrac{apr}{aq}[/tex]

[tex]ax^2+bx+c=ax^2-\left(\dfrac pq+r\right)x+\dfrac{pr}q[/tex]

It follows that

[tex]\begin{cases}-\dfrac pq-r=b\\\\\dfrac{pr}q=c\end{cases}[/tex]

and since we assumed [tex]b,c,\dfrac pq[/tex] are all rational, then there can only be rational solutions for [tex]r[/tex].