Respuesta :

Question 1:
 For this case, the first thing to do is find the side of the square.
 We have then that the perimeter is:
 P = 4L
 Clearing L:
 L = P / 4
 Substituting values:
 L = 48/4
 L = 12
 We now look for the length of the diagonal.
 for this we use the Pythagorean theorem:
 d = root ((L) ^ 2 + (L) ^ 2)
 d = root ((12) ^ 2 + (12) ^ 2)
 d = 16.97 feet
 Rounding:
 d = 17 feet
 Answer:
 G option
 d = 17 feet

 Question 2:
 For this case we have the following equation:
 2a - 6 + 5a = 3a + 10
 We solve the equation. To do this, we clear to.
 2a + 5a + 3a = 10 + 6
 a * (2 + 5 + 3) = 16
 10a = 16
 a = 16/10
 a = 1.6
 Rounding off we have:
 a = 2
 Answer:
 a = 2

 Question 3:
 For this case the coordinates of the midpoint are:
 C = (((x1 + x2) / 2), ((y1 + y2) / 2))
 Substituting values:
 C = (((-3 + 4) / 2), ((2 + 8) / 2))
 Rewriting we have:
 C = ((1/2), (10/2))
 C = (0.5, 5)
 We use the formula of distance between points:
 d = root ((x2-x1) ^ 2 + (y2-y1) ^ 2)
 Then, the distance AC is:
 AC = root ((0.5 - (- 3)) ^ 2 + (5-2) ^ 2)
 AC = 4.61 units
 Answer:
 
AC = 4.61 units
 
option A