The table shows the number of candies packed by Machine
a. The equation shows the number of candies packed by Machine
b. In both representations, x is a measure of the number of minutes and y is a measure of the number of candies packed. Machine A Candy Packing x (minutes) y (candies) 5 600 10 1200 15 1800 20 2400 Machine
b. y = 150x How many more candies could machine B pack than machine A in 12 minutes? 40 360 400 600

Respuesta :

Machine A:
x(minutes)   y(candies)
  5                     600
10                  1200
15                  1800
20                   2400

Machine B: y = 150x

Machine A: 600 / 5 = 120 candies per minute
120 cpm x 12 minutes = 1440
 
 Machine B: y = 150x
 150 cpm x 12 minutes = 1800

1800 - 1440 = 360 candies more for Machine B.  

Answer:

360

Step-by-step explanation:

Machine A:

x(minutes)   y(candies)

5                     600

10                    1200

15                    1800

20                   2400

In 5 minutes, Machine A produces candies = 600

So, it produces candies in 1 minute = [tex]\frac{600}{5}=120[/tex]

So, machine A produces candies in 12 minutes :

=  [tex]120\times12[/tex]

=   [tex]1440[/tex]

Machine B :  y = 150x

Equation of line : [tex]y=mx+c[/tex]

where m denotes the rate of change.

So, comparing the given equation of Machine B .

Slope m = 150

So, rate of machine B = 150 candies per minute .

Since Machine b produces candies in 1 minute = 150

So, it produces candies in 12 minute = 150 *12 =1800

Thus Machine B produces 1800 and Machine A produces 1440 in 12 minutes .

So, no. of candies more Machine B produces than Machine A:

= 1800-1440      

=360

Hence Machine B produces 360 more candies than Machine B in 12 minutes .