Respuesta :
Machine A:
x(minutes) y(candies)
5 600
10 1200
15 1800
20 2400
Machine B: y = 150x
Machine A: 600 / 5 = 120 candies per minute
120 cpm x 12 minutes = 1440
Machine B: y = 150x
150 cpm x 12 minutes = 1800
1800 - 1440 = 360 candies more for Machine B.
x(minutes) y(candies)
5 600
10 1200
15 1800
20 2400
Machine B: y = 150x
Machine A: 600 / 5 = 120 candies per minute
120 cpm x 12 minutes = 1440
Machine B: y = 150x
150 cpm x 12 minutes = 1800
1800 - 1440 = 360 candies more for Machine B.
Answer:
360
Step-by-step explanation:
Machine A:
x(minutes) y(candies)
5 600
10 1200
15 1800
20 2400
In 5 minutes, Machine A produces candies = 600
So, it produces candies in 1 minute = [tex]\frac{600}{5}=120[/tex]
So, machine A produces candies in 12 minutes :
= [tex]120\times12[/tex]
= [tex]1440[/tex]
Machine B : y = 150x
Equation of line : [tex]y=mx+c[/tex]
where m denotes the rate of change.
So, comparing the given equation of Machine B .
Slope m = 150
So, rate of machine B = 150 candies per minute .
Since Machine b produces candies in 1 minute = 150
So, it produces candies in 12 minute = 150 *12 =1800
Thus Machine B produces 1800 and Machine A produces 1440 in 12 minutes .
So, no. of candies more Machine B produces than Machine A:
= 1800-1440
=360
Hence Machine B produces 360 more candies than Machine B in 12 minutes .