Respuesta :

You have written ...
[tex]\dfrac{5k}{6}\times \dfrac{3}{2}k^{3}=\dfrac{5}{4}k^{4}[/tex]

Perhaps you intend ...
[tex]\dfrac{5k}{6}\times \dfrac{3}{2k^{3}}=\dfrac{5}{4k^{2}} = 1.25k^{-2}[/tex]

Answer:

[tex]\Rightarrow \dfrac{5}{4k^2}[/tex]

Step-by-step explanation:

Given: [tex]\dfrac{5k}{6}\times \dfrac{3}{2k^3}[/tex]

We are given rational expression and to simplify it.

First we factor [tex]k^3\rightarrow k\cdot k\cdot k[/tex]

[tex]\Rightarrow \dfrac{5k}{6}\times \dfrac{3}{2k\cdot k\cdot k}[/tex]

cancel the like terms from numerator and denominator

[tex]\Rightarrow \dfrac{5}{2}\times \dfrac{1}{2k\cdot k}[/tex]

[tex]\Rightarrow \dfrac{5}{4k^2}[/tex]

Hence, The product of  [tex]\dfrac{5k}{6}\times \dfrac{3}{2k^3}[/tex]  is [tex]\Rightarrow \dfrac{5}{4k^2}[/tex]