Respuesta :
Let
x-------> the length side of the original square garden
Step 1
Find the value of x
we know that
[tex](x-1)^{2}=25[/tex]
taking square root both sides
[tex](x-1)=(+/-)\sqrt{25}[/tex]
[tex](x-1)=(+/-)5[/tex]
[tex]x1=1+5=6\ ft[/tex]
[tex]x2=1-5=-4\ ft[/tex]
the solution is
[tex]x=6\ ft[/tex]
therefore
the answer Part a) is
The original length side of the square garden is [tex]6\ ft[/tex]
Step 2
Find the area of the original square garden
we know that
the area of the original square garden is equal to
[tex]A=x^{2}[/tex]
substitute the value of x in the formula
[tex]A=6^{2}=36\ ft^{2}[/tex]
therefore
the answer part b) is
the area of the original square garden is [tex]36\ ft^{2}[/tex]