Respuesta :

This is a problem of quadratic equation, but first of all we need to name:

[tex]w = tan(x)[/tex]

Then, the equation above:

[tex]-3tan^{2}(x) +1=0[/tex]

Is converting into:

[tex]-3w^{2}+1=0[/tex]

Then:

[tex]w= \frac{-b\pm \sqrt{b^{2}-4ac}}{2a}[/tex]

being a = -3, b = 0, c = 1, so there are two values of w:

[tex]\left \{ {{w_{1} = \frac{ \sqrt{3} }{3} } \atop {w_{2} =-\frac{ \sqrt{3} }{3} }} \right.[/tex]

Given that w = tan(x)

[tex]\left \{ {{tan(x_{1} ) = \frac{ \sqrt{3} }{3} } \atop {tan(x_{2} ) =-\frac{ \sqrt{3} }{3} }} \right.[/tex]

Finally:
[tex]x_{1}= \frac{ \pi }{6}[/tex]

[tex]x_{2}= -\frac{ \pi }{6}[/tex]



Answer:

pi/6+kpi and 5pi/6+kpi

Step-by-step explanation:

Edge 2020