Respuesta :
We are to find the value of [tex]sin^{-1}(tan( \frac{ \pi }{4})) [/tex]
First we evaluate tan(π/4). The value of tan(π/4) is 1.
So,
[tex]sin^{-1}(tan( \frac{ \pi }{4})) =sin^{-1} (1)[/tex]
sin(π/2) = 1
So,
[tex]sin^{-1}(1)= \frac{ \pi }{2} [/tex]
Thus, we can write:
[tex]sin^{-1}(tan( \frac{ \pi }{4}))= \frac{ \pi }{2} [/tex] radians.
So, the answer to this question is π/2 radians.
First we evaluate tan(π/4). The value of tan(π/4) is 1.
So,
[tex]sin^{-1}(tan( \frac{ \pi }{4})) =sin^{-1} (1)[/tex]
sin(π/2) = 1
So,
[tex]sin^{-1}(1)= \frac{ \pi }{2} [/tex]
Thus, we can write:
[tex]sin^{-1}(tan( \frac{ \pi }{4}))= \frac{ \pi }{2} [/tex] radians.
So, the answer to this question is π/2 radians.