[tex]\bf 343^{\frac{2}{3}}+36^{\frac{1}{2}}-256^{\frac{3}{4}}\qquad \begin{cases}
343=7\cdot 7\cdot 7\\
\qquad 7^3\\
36=6\cdot 6\\
\qquad 6^2\\
256=4\cdot 4\cdot 4\cdot 4\\
\qquad 4^4
\end{cases}\\\\\\ (7^3)^{\frac{2}{3}}+(6^2)^{\frac{1}{2}}-(4^4)^{\frac{3}{4}}
\\\\\\
\sqrt[3]{(7^3)^2}+\sqrt[2]{(6^2)^1}-\sqrt[4]{(4^4)^3}\implies \sqrt[3]{(7^2)^3}+\sqrt[2]{(6^1)^2}-\sqrt[4]{(4^3)^4}
\\\\\\
7^2+6-4^3\implies 49+6-64\implies -9[/tex]
to see what you can take out of the radical, you can always do a quick "prime factoring" of the values, that way you can break it in factors to see who is what.