Respuesta :

The answer is 13. Good Luck

Answer:

The value of n is:

13

Step-by-step explanation:

We are given a linear function f(x).

Also we are given a set of values for the function f(x) at different values of x.

The table of values are as follows:

                x                    f(x)

                 3                     7

                 7                      n

                 9                     16

                16                    26.5  

Now, firstly we will find the equation of a line and then put the value of x=7 to find the value of n.

As we know that the equation of a line passing through two point (a,b) and (c,d) is given by:

[tex]y-b=\dfrac{d-b}{c-a}\times (x-a)[/tex]

So, let:

(a,b)=(3,7) and (b,d)=9,16)

Hence, then equation of line i.e. y=f(x) is:

[tex]y-7=\dfrac{16-7}[9-3}\times *(x-3)\\\\y-7=\dfrac{3}{2}\times (x-3)\\\\y-7=\dfrac{3}{2}x-\dfrac{9}{2}\\\\y=\dfrac{3}{2}x-\dfrac{9}{2}+7\\\\y=\dfrac{3}{2}x+\dfrac{5}{2}[/tex]

Now, the value of y=f(x) when x=7 is:

[tex]y=\dfrac{3}{2}\times 7+\dfrac{5}{2}\\\\y=\dfrac{21}{2}+\dfrac{5}{2}\\\\y=\dfrac{21+5}{2}\\\\y=\dfrac{26}{2}\\\\y=13[/tex]

Hence, the value of n is:

n=13