Which of these statements is true for f(x)=(1/2)^x ?

A. It is always increasing.
B. The domain of f(x) is x > 0.
C. The y-intercept is (0, 1).
D. The range of f(x) is y>1/2 .

Respuesta :

Answer:

The answer is c


Step-by-step explanation:


Answer:

C

Step-by-step explanation:

We are given that a function

[tex]f(x)=(\frac{1}{2})^x[/tex]

It can be write as

[tex]y=f(x)=2^{-x}[/tex]

Taking log on both sides

[tex]logy=-xlog2[/tex]

Differentiate w.r.t x

[tex]\frac{1}{y}\frac{dy}{dx}=-log 2[/tex]

[tex]\frac{d(logx)}{dx}=\frac{1}{x}[/tex]

[tex]\frac{dy}{dx}=-ylog2=-2^{-x}log2<0[/tex] for all x

When f'(x) <0 then function is decreasing.

Hence, given function is decreasing function.

Substitute x=0 then we get

[tex]f(0)=1[/tex] Because ([tex]a^0=1[/tex])

Therefore, y intercept is (0,1).

Domain pf function f(x)=R

Range of given function :([tex]0,\infty[/tex])

Hence, option C is true.

Ver imagen lublana