What is the measure of ∠J to the nearest degree?
45
55
70
83

Answer:
(A)45
Step-by-step explanation:
It is given that JGH is a triangle and JH=7 and GH=5.
Now, From ΔJGH, using the sine law, we get
[tex]\frac{sinJ}{GH}=\frac{sinG}{JH}[/tex]
Substituting the given values, we get
[tex]\frac{sinJ}{5}=\frac{sinG}{7}[/tex]
[tex]sinJ=\frac{5\times(sin80)}{7}[/tex]
[tex]sinJ=\frac{5\times(0.984)}{7}[/tex]
[tex]sinJ=\frac{4.924}{7}[/tex]
[tex]sinJ=0.703[/tex]
[tex]J=sin^{-1}(0.703)[/tex]
[tex]J=44.66[/tex]
[tex]J[/tex]≈[tex]45[/tex]
Thus, the measure of the angle J is 45.
Hence, option (A) is correct.