Which graph shows the solution to the system of equations? Solve the system graphically. Click on the graph until the correct solution appears. 2x + 3y = 6 x + y = 4

Respuesta :

2x + 3y = 6 → 2x + 3y = 6
  x +   y = 4 → 3x + 3y = 12
                               -x = -6
                               -1    -1
                                x = 6
                           x + y = 4
                           6 + y = 4
                         - 6       - 6
                                 y = -2
                           (x, y) = (6, -2)

Answer:  Solutions for the value of x and y are given below:

[tex]x=6\\\\y=-2[/tex]

Step-by-step explanation:

since we have given that

2x + 3y = 6

x + y = 4

We need to plot the equation to show the graph.

For first equation:

2x + 3y = 6

put x=0

[tex]0+3y=6\\\\y=\frac{6}{3}\\\\y=2[/tex]

And Put y = 0

[tex]2x=6\\\\x=\frac{6}{2}\\\\x=3[/tex]

So, Coordinates for the above equation are

(0,2) and (3,0)

Similarly, for second equation :

x + y = 4

Put x=0

[tex]y=4\\\\Put\ y=0\\\\x=4[/tex]

So, coordinates of the above equation are

(0,4) and (4,0)

So, the graph is shown below:

Now, we need to solve the system graphically,

So, the two equations intersect at (6,-2) in the graph.

so, Solutions for the value of x and y are given below:

[tex]x=6\\\\y=-2[/tex]

Ver imagen RenatoMattice