Respuesta :
All you need to do for this is to plug in the given values for the radius and the height to solve for volume. You won't actually get a number answer, because there are variables, but this is what the problem gives us, so that's what we'll use.
Volume= pi(r^2)(h)
V=pi((x+8)^2)(2x+3)
V=pi(x^2+16x+64)(2x+3)
V=pi(2x^3+3x^2+32x^2+48x+128x+132)
V=pi(2x^3+35x^2+176x+132)
Volume= pi(r^2)(h)
V=pi((x+8)^2)(2x+3)
V=pi(x^2+16x+64)(2x+3)
V=pi(2x^3+3x^2+32x^2+48x+128x+132)
V=pi(2x^3+35x^2+176x+132)
Answer:
Volume of the can = π(2x³+35x²+176x+192)
Step-by-step explanation:
Volume of a cylinder, V = πr²h
Radius of cylinder, r = x + 8
Height of cylinder, h = 2 x + 3
Volume of the can,
[tex]V=\pi\times (x+8)^2\times (2x+3)=\pi\times (x^2+16x+64)\times (2x+3)\\\\V=\pi\times (2x^3+32x^2+128x+3x^2+48x+192)\\\\V=\pi(2x^3+35x^2+176x+192)[/tex]
Volume of the can = π(2x³+35x²+176x+192)