Respuesta :
sin x and csc x are reciprocals, so sin x ( csc x) = 1.
Next:
sin x -cos x
------ * ----------- * cos x = - (cos x)^2
1 sin x
Then we have 1 - (cos x)^2, which in turn is equal to (sin x)^2 (answer)
Next:
sin x -cos x
------ * ----------- * cos x = - (cos x)^2
1 sin x
Then we have 1 - (cos x)^2, which in turn is equal to (sin x)^2 (answer)
Answer:
The expression sinx(cscx-cotx cosx) can be simplified to sin²x.
Step-by-step explanation:
Consider the provided trigonometric expression.
[tex]sinx(cscx-cotx cosx)[/tex]
Open the parentheses and apply the distributive property: a(b+c)=ab+ac
[tex]sinx\cdot cscx-cotx \cdot cosx \cdot sinx[/tex]
Now use the identity: [tex]cscx= \frac{1}{sinx}, cotx=\frac{cosx}{sinx}[/tex]
[tex]sinx\cdot \frac{1}{sinx}-\frac{cosx}{sinx} \cdot cosx \cdot sinx [/tex]
[tex]1-cos^2x[/tex]
Use the identity: 1 - cos²x = sin²x
Thus, [tex]1-cos^2x=sin^2x[/tex]
Hence the expression sinx(cscx-cotx cosx) can be simplified to sin²x.