Angle θ is in standard position. If (8, -15) is on the terminal ray of angle θ, find the values of the trigonometric functions. sin(θ) = cos(θ) = tan(θ) = csc(θ) = sec(θ) = cot(θ) =

Respuesta :

check the picture below.

[tex]\bf sin(\theta )=\cfrac{\stackrel{opposite}{-15}}{\stackrel{hypotenuse}{17}}\qquad cos(\theta )=\cfrac{\stackrel{adjacent}{8}}{\stackrel{hypotenuse}{17}}\qquad tan(\theta )=\cfrac{\stackrel{opposite}{-15}}{\stackrel{adjacent}{8}} \\\\\\ cot(\theta )=\cfrac{\stackrel{adjacent}{8}}{\stackrel{opposite}{-15}}\qquad sec(\theta )=\cfrac{\stackrel{hypotenuse}{17}}{\stackrel{adjacent}{8}}\qquad csc(\theta )=\cfrac{\stackrel{hypotenuse}{17}}{\stackrel{opposite}{-15}}[/tex]
Ver imagen jdoe0001

Answer:

in(θ) =  

✔ -15/17

cos(θ) =  

✔ 8/17

tan(θ) =  

✔ -15/8

csc(θ) =  

✔ -17/15

sec(θ) =  

✔ 17/8

cot(θ) =  

✔ -8/15

Step-by-step explanation:.