Respuesta :
check the picture below.
[tex]\bf sin(\theta )=\cfrac{\stackrel{opposite}{-15}}{\stackrel{hypotenuse}{17}}\qquad cos(\theta )=\cfrac{\stackrel{adjacent}{8}}{\stackrel{hypotenuse}{17}}\qquad tan(\theta )=\cfrac{\stackrel{opposite}{-15}}{\stackrel{adjacent}{8}} \\\\\\ cot(\theta )=\cfrac{\stackrel{adjacent}{8}}{\stackrel{opposite}{-15}}\qquad sec(\theta )=\cfrac{\stackrel{hypotenuse}{17}}{\stackrel{adjacent}{8}}\qquad csc(\theta )=\cfrac{\stackrel{hypotenuse}{17}}{\stackrel{opposite}{-15}}[/tex]
[tex]\bf sin(\theta )=\cfrac{\stackrel{opposite}{-15}}{\stackrel{hypotenuse}{17}}\qquad cos(\theta )=\cfrac{\stackrel{adjacent}{8}}{\stackrel{hypotenuse}{17}}\qquad tan(\theta )=\cfrac{\stackrel{opposite}{-15}}{\stackrel{adjacent}{8}} \\\\\\ cot(\theta )=\cfrac{\stackrel{adjacent}{8}}{\stackrel{opposite}{-15}}\qquad sec(\theta )=\cfrac{\stackrel{hypotenuse}{17}}{\stackrel{adjacent}{8}}\qquad csc(\theta )=\cfrac{\stackrel{hypotenuse}{17}}{\stackrel{opposite}{-15}}[/tex]

Answer:
in(θ) =
✔ -15/17
cos(θ) =
✔ 8/17
tan(θ) =
✔ -15/8
csc(θ) =
✔ -17/15
sec(θ) =
✔ 17/8
cot(θ) =
✔ -8/15
Step-by-step explanation:.