Assume a quarter, diameter 0.96 inches, is centered at the point (–2, 5), where each unit represents one inch. Write the equation of a circle that would precisely enclose the coin.

Respuesta :

If the diameter of this circle is .96, then the radius is .48.  The h and k values of our center are (-2, 5), and the standard form of a circle is [tex](x-h)^2+(y-k)^2=r^2[/tex].  We will fill in accordingly.  [tex](x-(-2))^2+(y-5)^2=.48^2[/tex].  That simplifies to [tex](x+2)^2+(y-5)^2=.2304[/tex].  That's the equation of the circle that will completely enclose the quarter.
frika
To write the circle equation [tex](x-x_0)^2+(y-y_0)^2=r^2[/tex] you should know the centre coordinates [tex](x_0,y_0)[/tex] and radius r.
1. [tex]x_0=-2 \\ y_0=5 [/tex] and [tex]r= \frac{0.96}{2} =0.48[/tex] in.
2. The circle equation is:
 [tex](x+2)^2+(y-5)^2=0.48^2 \\ (x+2)^2+(y-5)^2=0.2304[/tex].