Respuesta :
f(x) = 1/(x+5)
g(x)= x-2
f(g(x))= 1/(x-2+5)= 1/(x+3)
Domain of f(g(x)) - all real numbers except x= - 3.
(-∞, - 3)U(-3, +∞)
g(x)= x-2
f(g(x))= 1/(x-2+5)= 1/(x+3)
Domain of f(g(x)) - all real numbers except x= - 3.
(-∞, - 3)U(-3, +∞)
Answer:
domain is
R-{-3}
Step-by-step explanation:
Given that
[tex]f(x) = \frac{1}{x+5}[/tex]
and[tex]g(x) = x-2[/tex]
We find that domain of f(x) is R-{-5} and g(x) has all real numbers as domain
[tex]f{g(x)}=f(x-2)\\=\frac{1}{x-2+5} \\=\frac{1}{x+3}[/tex]
Thus we find the composition of function has x+3 in denominator
Hence domain is
R-{-3}