As the variation is direct we have:
[tex]y = kx ^ 2
[/tex]
We must find the value of k.
For this, we use the following data:
y = 200 when x = 5
Substituting values we have:
[tex]200 = k5 ^ 2
[/tex]
Clearing k:
[tex]k = 200/5 ^ 2
k = 200/25
k = 8[/tex]
Then, the function is:
[tex]y = 8x ^ 2
[/tex]
We evaluate the function for x = -3
[tex]y = 8 (-3) ^ 2
y = 8 (9)
y = 72[/tex]
Answer:
the value of y when x = -3 is:
c.
72