Respuesta :
[tex]4x^2+y^2+4xy+8x+4y+4\\\\=\underbrace{(2x)^2+2\cdot2x\cdot y+y^2}_{(a+b)^2=a^2+2ab+b^2}+8x+4y+4\\\\=\underbrace{(2x+y)^2+2(2x+y)\cdot2+2^2}_{(a+b)^2=a^2+2ab+b^2}\\\\=[(2x+y)+2]^2=(2x+y+2)^2[/tex]
The factors of the polynomial are (2x + y + 2) and (2x + y + 2)
The expression is given as:
[tex]\mathbf{4x^2 + y^2 + 4xy + 8x + 4y + 4}[/tex]
Rewrite as:
[tex]\mathbf{4x^2 + y^2 + 4xy + 8y + 4y + 4 = (2x)^2 + 4xy + y^2 + 8x + 4y + 4}[/tex]
Expand
[tex]\mathbf{4x^2 + y^2 + 4xy + 8y + 4y + 4 = (2x)^2 + 2xy + 2xy + y^2 + 8x + 4y + 4}[/tex]
Factorize
[tex]\mathbf{4x^2 + y^2 + 4xy + 8y + 4y + 4 = 2x(2x + y) + y(2x + y) + 8x + 4y + 4}[/tex]
Factor out 2x + y
[tex]\mathbf{4x^2 + y^2 + 4xy + 8y + 4y + 4 = (2x + y)(2x + y) + 8x + 4y + 4}[/tex]
Express as squares
[tex]\mathbf{4x^2 + y^2 + 4xy + 8y + 4y + 4 = (2x + y)^2 + 8x + 4y + 4}[/tex]
Factorize 8x + 4y
[tex]\mathbf{4x^2 + y^2 + 4xy + 8y + 4y + 4 = (2x + y)^2 + 4(2x + y) + 4}[/tex]
Let z = 2x + y
[tex]\mathbf{4x^2 + y^2 + 4xy + 8y + 4y + 4 = z^2 + 4z + 4}[/tex]
Expand
[tex]\mathbf{4x^2 + y^2 + 4xy + 8y + 4y + 4 = z^2 + 2z + 2z + 4}[/tex]
Factorize
[tex]\mathbf{4x^2 + y^2 + 4xy + 8y + 4y + 4 = z(z + 2) + 2(z + 2)}[/tex]
Factor out z + 2
[tex]\mathbf{4x^2 + y^2 + 4xy + 8y + 4y + 4 = (z + 2)(z + 2)}[/tex]
Express as squares
[tex]\mathbf{4x^2 + y^2 + 4xy + 8y + 4y + 4 = (z + 2)^2}[/tex]
Recall that: z = 2x + y
So, we have:
[tex]\mathbf{4x^2 + y^2 + 4xy + 8y + 4y + 4 = (2x + y + 2)^2}[/tex]
Hence, the factors of the polynomial are (2x + y + 2) and (2x + y + 2)
Read more about polynomial factors at:
https://brainly.com/question/12787576