Diagonalize a if possible. (find p and d such that a = pdp−1 for the given matrix
a. enter your answer as one augmented matrix. if the matrix is not able to be diagonalized, enter dne in any cell.) −10 30 −6 17

Respuesta :

[tex]\mathbf A=\begin{bmatrix}-10&30\\-6&17\end{bmatrix}[/tex]


Compute the eigenvalues of [tex]\mathbf A[/tex]:


[tex]\begin{vmatrix}-10-\lambda&30\\-6&17-\lambda\end{vmatrix}=(-10-\lambda)(17-\lambda)+180=(\lambda-5)(\lambda-2)=0[/tex]

[tex]\implies\lambda=5,\lambda=2[/tex]


Find the corresponding eigenvectors [tex]\eta[/tex]:


[tex]\lambda_1=2\implies\begin{bmatrix}-12&30\\-6&15\end{bmatrix}\eta_1=\mathbf0[/tex]

[tex]\implies\eta_1=\begin{bmatrix}5\\2\end{bmatrix}[/tex]


[tex]\lambda_2=5\implies\begin{bmatrix}-15&30\\-6&12\end{bmatrix}\eta_2=\mathbf0[/tex]

[tex]\implies\eta_2=\begin{bmatrix}2\\1\end{bmatrix}[/tex]


Now,


[tex]\mathbf A=\begin{bmatrix}\eta_1&\eta_2\end{bmatrix}\mathrm{diag}(\lambda_1,\lambda_2)\begin{bmatrix}\eta_1&\eta_2\end{bmatrix}^{-1}[/tex]

[tex]\mathbf A=\begin{bmatrix}5&2\\2&1\end{bmatrix}\begin{bmatrix}2&0\\0&5\end{bmatrix}\begin{bmatrix}5&2\\2&1\end{bmatrix}^{-1}[/tex]