Respuesta :

[tex] \bf ~~~~~~~~~~~~\textit{negative exponents}
\\\\
a^{-n} \implies \cfrac{1}{a^n}
\qquad \qquad
\cfrac{1}{a^n}\implies a^{-n}
\qquad \qquad
a^n\implies \cfrac{1}{a^{-n}}
\\\\
-------------------------------\\\\
\cfrac{5^5}{5^2}\implies 5^5\cdot 5^{-2}\implies 5^{5-2}\implies 5^3\implies 125 [/tex]

Answer:

The value of C is 125

Step-by-step explanation:

We need to find the value of C of the expression [tex]\frac{5^{5}}{5^{2}}=a^{b}=C[/tex]

Since, [tex]\frac{a^{m}}{b^{n}}=a^{m-n}[/tex]

[tex]\frac{5^{5}}{5^{2}}=a^{b}=C[/tex]

[tex]5^{5-2}=a^{b}=C[/tex]

[tex]5^{3}=a^{b}=C[/tex]

now,

[tex]5^{3}=C[/tex]

[tex]125=C[/tex]

Hence, the value of C is 125