G with the definition of covariance, prove cov[(ay − b),(cy − d)] = accov(x, y ), where x, y are random variables and a, b, c, d are constants.

Respuesta :

By definition of covariance,


[tex]\mathrm{Cov}(X,Y)=\mathbb E[(X-\mathbb E[X])(Y-\mathbb E[Y])][/tex]


[tex]\mathrm{Cov}(X,Y)=\mathbb E[XY-\mathbb E[X]Y-X\mathbb E[Y]+\mathbb E[X]\mathbb E[Y]]=\mathbb E[XY]-\mathbb E[X]\mathbb E[Y][/tex]


We have


[tex]\mathbb E[(aX-b)(cY-d)]=\mathbb E[acXY-adX-bcY+bd][/tex]

[tex]=ac\mathbb E[XY]-ad\mathbb E[X]-bc\mathbb E[Y]+bd[/tex]


[tex]\mathbb E[aX-b]=a\mathbb E[X]-b[/tex]


[tex]\mathbb E[cY-d]=c\mathbb E[Y]-d[/tex]


[tex]\mathbb E[aX-b]\mathbb E[cY-d]=ac\mathbb E[X]\mathbb E[Y]-ad\mathbb E[X]-bc\mathbb E[Y]+bd[/tex]


Putting everything together, we find the covariance reduces to


[tex]\mathrm{Cov}(aX-b,cY-d)=ac(\mathbb E[XY]-\mathbb E[X]\mathbb E[Y])=ac\mathrm{Cov}(X,Y)[/tex]


as desired.