What is the angle between v=(-7,8) and w=(5,3)
1) Use the formula v1*v2=|v1||v2|cos(theta) to find the cosine of the angle between these vectors.
2)Use the cosine of the angle to find the actual angle between the two vectors.

Respuesta :

we are given with

v=<-7,8> and w=<5,3>

1) Using the formula [tex] \\
\
v_1*v_2=|v_1||v_2|cos\theta\\
\\
\
\Rightarrow cos \theta=\frac{v_1*v_2}{|v_1||v_2|}\\ [/tex]

[tex] \\
\
v_1*v_2=|v_1||v_2|cos\theta\\
\\
\
\Rightarrow cos \theta=\frac{<-7,8>*<5,3>}{|\sqrt{49+64}||\sqrt{25+9}|}\\
\\
\Rightarrow cos \theta=\frac{-35+24}{|\sqrt{49+64}||\sqrt{25+9}|}=\frac{-11}{|\sqrt{113}||\sqrt{34}|}\\
\\
\
\Rightarrow cos \theta=-0.1774\\
\\
\
2.\\
\\
\
cos \theta=-0.1774\\

\\
\
\Rightarrow \theta=cos^{-1}(-0.1774)\\
\\
\
\Rightarrow \theta=100.21^{\circ}\\ [/tex]

Answer:[tex]\theta =100.22^{\circ}[/tex]

Step-by-step explanation:

vector v is -7i+8j

vector w is 5i+3j

Angle between vectors is given by

[tex]a\cdot b=|a||b|cos\theta [/tex]

therefore applying above formula

[tex]v\cdot w=|v||w|cos\theta [/tex]

-35+24=[tex]\sqrt{7^2+8^2}\sqrt{5^2+3^2}cos\theta [/tex]

[tex]\frac{-11}{61.983}=cos\theta [/tex]

[tex]cos\theta =-0.1774[/tex]

[tex]\theta =100.22^{\circ}[/tex]