Find the solution r(t)r(t) of the differential equation with the given initial condition: r′(t)=⟨sin9t,sin6t,9t⟩,r(0)=⟨4,6,3⟩

Respuesta :

[tex]\mathbf r'(t)=\langle\sin9t,\sin6t,9t\rangle[/tex]


[tex]\mathbf r(t)=\displaystyle\int\mathbf r'(t)\,\mathrm dt[/tex]


[tex]\mathbf r(t)=\left\langle\displaystyle\int\sin9t\,\mathrm dt,\int\sin6t\,\mathrm dt,\int9t\,\mathrm dt\right\rangle[/tex]


[tex]\displaystyle\int\sin9t\,\mathrm dt=\frac19\cos9t+C_1[/tex]

[tex]\displaystyle\int\sin6t\,\mathrm dt=\frac16\cos6t+C_2[/tex]

[tex]\displaystyle\int9t\,\mathrm dt=\frac92t^2+C_3[/tex]


With the initial condition [tex]\mathbf r(0)=\langle4,6,3\rangle[/tex], we find


[tex]\dfrac19\cos0+C_1=4\implies C_1=\dfrac{35}9[/tex]

[tex]\dfrac16\cos0+C_2=6\implies C_2=\dfrac{35}6[/tex]

[tex]\dfrac92\cdot0^2+C_3=3\implies C_3=3[/tex]


So the particular solution to the IVP is


[tex]\mathbf r(t)=\left\langle\dfrac19\cos9t+\dfrac{35}9,\dfrac16\cos6t+\dfrac{35}6,\dfrac92t^2+3\right\rangle[/tex]

Here we want to solve a differential equation:

r'(t) = < sin(9t), sin(6t), 9t >

With the restriction: r(0)=⟨4,6,3⟩

Remember that:

r'(t) = dr(t)/dt

Also, remember the general rules:

[tex]f(x) = A\cdot x^n + C\\\\f'(x) = n\cdot A \cdot x^{n - 1}[/tex]

and:

[tex]g(x) = A \cdot cos(k \cdot x) + C \\\\g'(x) = -k \cdot A \cdot sin(k \cdot x)[/tex]

Then using these rules we can get the antiderivatives of r(x) to get:

r(t) = < -cos(9t)/9 + c₁, -cos(6t)/6 + c₂, 9t²/2 + c₃ >

Where c₁, c₂, and c₃ are the constants of integration.

To find these values, we can use the given restriction:

r(0) = <4, 6, 3> = <  -cos(0)/9 + c₁, -cos(0)/6 + c₂, 0 + c₃ >

                        = <  - 1/9 + c₁, -1/6 + c₂,  c₃ >

Then we have 3 equations:

first component:

-1/9 + c₁ = 4

then

c₁ = 4 + 1/9 = 37/9

Second component:

- 1/6 + c₂ = 6

then

c₂ = 6 + 1/6 = 37/6

Third component:

c₃ = 3

Now we can conclude that the function is:

r(t) = < -cos(9t)/9 + 37/9, -cos(6t)/6 + 37/6 , 9t²/2 + 3 >

If you want to learn more, you can read:

https://brainly.com/question/24062595