FREE BRAINLIEST!!!!!!

Solve the following compound inequality:

−2(x + 4) + 10 < x − 7 or −2x + 9 > 3(x + 8)
x < 3 or x > −3
x > 3 or x < −3
x < 7 or x > −3
x > 7 or x < −3

Respuesta :

Let's solve the first inequality at first. So,

−2(x + 4) + 10 < x − 7

-2x- 8 + 10 < x - 7 By distribution property.

-2x + 2 < x - 7 Adding the like terms.

-2x < x - 7 - 2 Subtract 2 from each sides.

-2x < x - 9 By simplifying.

-2x - x < -9 Subtract x from each sides.

-3x < -9

[tex] -\frac{3x}{3} <-\frac{9}{3} [/tex]

Since we are dividing by negative 3. So, sign of inequality will get change.

So, x>3

Now the next inequality is,

−2x + 9 > 3(x + 8)

-2x + 9 > 3x + 24

-2x > 3x + 24 - 9

-2x > 3x + 15

-2x - 3x > 15

-5x >15

[tex] -\frac{5x}{-5} >\frac{15}{-5} [/tex]

So, x <-3

Hence, the correct choice is x > 3 or x < −3.