Respuesta :
The volume of a right circular cone is
[tex] V=\dfrac{1}{3}\pi r^2\cdot h [/tex].
If a circumference of a base circle is 17.7 m, then using formula [tex] l=2\pi r [/tex] for circumference of a circle, you can find the radius:
[tex] 17.7=2\pi r,\\ \\ r=\dfrac{17.7}{2\pi} =\dfrac{8.85}{\pi} [/tex].
Then the volume is:
[tex] V=\dfrac{1}{3}\pi r^2\cdot h =\dfrac{1}{3}\pi \left(\dfrac{8.85}{\pi}\right)^2\cdot 12.1=\dfrac{315.90075}{\pi}[/tex].
Answer:
[tex]V_{cone}=100.6 m^{3}[/tex]
Step-by-step explanation:
The volume of a cone is defined as:
[tex]V_{cone}=\frac{1}{3}A_{base}h[/tex]
So, a cone has a circular base, and its area is:
[tex]A_{base}=\pi r^{2}[/tex]
Replacing this relation in the volume equation:
[tex]V_{cone}=\frac{1}{3}\pi r^{2}h[/tex]
Now, the problem gives us the height but no the radius, instead it gives the circumference length, which we can use to find the radius:
[tex]L=2\pi r\\r=\frac{L}{2 \pi}\\ r=\frac{17.7m}{2 \pi}\\r=\frac{8.85}{\pi}m[/tex]
Then, we use this radius to find the volume:
[tex]V_{cone}=\frac{1}{3}\pi (\frac{8.85}{\pi}m)^{2}12.1m[/tex]
[tex]V_{cone}=\frac{315.9}{\pi} m^{3}[/tex]
Using [tex]\pi \approx 3.14[/tex]:
[tex]V_{cone}=\frac{315.9}{3.14} m^{3}=100.6 m^{3}[/tex]
Therefore, the volume is [tex]V_{cone}=100.6 m^{3}[/tex]