Respuesta :
Answer : [tex] (x^2 - 6x + 9) + (y^2- 4y + 4) = 3 + (9 + 4) [/tex]
Center is (-3,3) and radius = 4
[tex] (x + 4)^2 + (y - 3)^2 = 6^2 [/tex]
(1) Step 1: [tex] x^2 - 6x + y^2 - 4y = 3 [/tex]
Step 2: [tex] (x^2- 6x) + (y^2 - 4y) = 3 [/tex]
In completing the square method we take coefficient of x and divide by 2 and the square it . Then add it on both sides
The coefficient of x is -6. [tex] \frac{-6}{2} [/tex] = (-3)^2 = 9
The coefficient of y is -4. [tex] \frac{-4}{2} [/tex] = (-2)^2 = 4
Step : [tex] (x^2- 6x + 9) + (y^2 - 4y + 4) = 3 +9 + 4 [/tex]
(2) [tex] x^2 + y^2 + 6x - 6y + 2 = 0 [/tex]
To find center and radius we write the equation in the form of
[tex] (x-h)^2 + (y-k)^2 = r^2 [/tex] using completing the square form
Where (h,k) is the center and 'r' is the radius
[tex] x^2 + y^2 + 6x - 6y + 2 = 0 [/tex]
[tex] (x^2 + 6x) + (y^2 - 6y) + 2 = 0 [/tex]
In completing the square method we take coefficient of x and divide by 2 and the square it . Then add it on both sides
[tex] (x^2 + 6x + 9) + (y^2 - 6y + 9) = -2 + 9 + 9 [/tex]
[tex] (x + 3)^2 + (x - 3)^2 = 16 [/tex]
Here h= -3 and k=3 and [tex] r^2 = 16 [/tex] so r= 4
Center is (-3,3) and radius = 4
(c) Step 1: [tex] x^2 + 8x + y^2 - 6y = 11 [/tex]
Step 2: [tex] (x^2 + 8x) + (y^2 - 6y) = 11 [/tex]
Step 3: [tex] (x^2 + 8x + 16) + (y^2 - 6y + 9) = 11 + (16 + 9) [/tex]
Step 4: [tex] (x^2 + 8x + 16) + (y^2 - 6y + 9) = 36 [/tex]
We factor out each quadratic
(x^2 + 8x + 16) = (x+4)(x+4) = [tex] (x+4)^2 [/tex]
((y^2 - 6y + 9)) = (x-3)(x-3) = [tex] (x-3)^2 [/tex]
Step 5 :[tex] (x + 4)^2 + (y - 3)^2 = 6^2 [/tex]