we are given
[tex] s(t)=t^3-8t [/tex]
(a)
we can set s(t)=0
and then we can solve for t
[tex] t^3-8t=0 [/tex]
[tex] t(t^2-8)=0 [/tex]
[tex] t(t-\sqrt{8}) (t+\sqrt{8})=0 [/tex]
so, we get
[tex] t=0,t=\sqrt{8} [/tex]............Answer
(b)
Firstly, we will find a(t)
we know that a(t) is second derivative of s(t)
[tex] s'(t)=3t^2-8*1 [/tex]
now, we can find derivative again
[tex] s''(t)=3*2t^1-8*0 [/tex]
[tex] a(t)=6t [/tex]
now, we can set it to 0
and then we can solve for t
[tex] a(t)=6t=0 [/tex]
[tex] t=0 [/tex]............Answer
(c)
Firstly, we will set s'(t)=0 and a(t)=0
and then we solve for t
[tex] s'(t)=3t^2-8*1=0 [/tex]
[tex] t=1.63299 [/tex]
[tex] t=0 [/tex]
now, we can draw number line
and then we can check sign of s'(t) and s''(t) on each intervals
same sign means speeding up
different sign means speeding down
speeding up interval:
[tex] (1.63299,\infty) [/tex]
speeding down interval:
[tex] (0, 1.63299) [/tex]