A piece of wood has a labeled length value of 63.2 cm. You measure its length three times and record the following data: 63.1 cm, 63.0 cm, and 63.7 cm. Calculate the percent error for each measurement.

Respuesta :

Percent error (%)= [tex]\frac{\left | Accepted value - Measured value \right |}{Accepted value}\times 100[/tex]

Accepted value is true value.

Measured values is calculated value.

In the question given Accepted value (true value) = 63.2 cm

Given Measured(calculated values) = 63.1 cm , 63.0 cm , 63.7 cm

1) Percent error (%) for first measurement.

Accepted value (true value) = 63.2 cm, Measured(calculated values) = 63.1 cm

Percent error (%)= [tex]\frac{\left | Accepted value - Measured value \right |}{Accepted value}\times 100[/tex]

[tex]Percent error = \frac{\left | 63.2 - 63.1 \right |}{63.2}\times 100[/tex]

[tex]Percent error = \frac{0.1}{63.2}\times 100[/tex]

[tex]Percent error = 0.00158\times 100[/tex]

Percent error = 0.158 %

2) Percent error (%) for second measurement.

Accepted value (true value) = 63.2 cm, Measured(calculated values) = 63.0 cm

Percent error (%)= [tex]\frac{\left | Accepted value - Measured value \right |}{Accepted value}\times 100[/tex]

[tex]Percent error = \frac{\left | 63.2 - 63.0 \right |}{63.2}\times 100[/tex]

[tex]Percent error = \frac{0.2}{63.2}\times 100[/tex]

[tex]Percent error = 0.00316\times 100[/tex]

Percent error = 0.316 %

3) Percent error (%) for third measurement.

Accepted value (true value) = 63.2 cm, Measured(calculated values) = 63.7 cm

Percent error (%)= [tex]\frac{\left | Accepted value - Measured value \right |}{Accepted value}\times 100[/tex]

[tex]Percent error = \frac{\left | 63.2 - 63.7 \right |}{63.2}\times 100[/tex]

[tex]Percent error = \frac{\left | -0.5 \right |}{63.2}\times 100[/tex]

[tex]Percent error = \frac{(0.5)}{63.2}\times 100[/tex]

[tex]Percent error = 0.00791\times 100[/tex]

Percent error = 0.791 %

Percent error for each measurement is :

63.1 cm = 0.158%

63.0 cm = 0.316%

63.7 cm = 0.791%




Ver imagen Myotis