Respuesta :

a)
[tex]g(0) = 1[/tex]
b)
[tex]g( - 1) = 3 \times 1 - 2 \times ( - 1) + 1 = 6[/tex]
c)
[tex]g(3) = 3 \times 9 - 2 \times 3 + 1 = 27 - 6 + 1 = 22[/tex]
d)
[tex]g( - x) = 3 {x}^{2} - 2( - x) + 1 = 3 {x}^{2} + 2x + 1[/tex]
e)
[tex]g(1 - t) = 3 {(1 - t)}^{2} - 2(1 - t) + 1 = 3 - 6t + 3 {t}^{2} - 2 + 2t + 1 = 3 {t}^{2} - 4t + 2[/tex]

The values of the given function g(x) = [tex]3x^2-2x+1[/tex] are as follows:

A) g(0) = 1

B) g(-1) = 6

C) g(3) = 22

D) g(-x) = [tex]3x^2+2x+1[/tex]

E) g(1 - t) = [tex]3t^2-4t+2[/tex]

This values are obtained by substituting x = 0, -1, 3, -x, and (1 - t) respectively in the given function.

What is the function?

A function is the representation of the relation between the output values and the input values. The general form of a function is f(x) = y where x is the independent variable i.e., x: x ∈ R, and y is the dependent variable.

Calculating the function g(x) for the given values of x:

The given values of x are x = 0, -1, 3, -x, and (1 - t)

So, on substituting these values in the given function g(x) = [tex]3x^2-2x+1[/tex], we get

A) At x=0,

g(0) = [tex]3(0)^2-2(0)+1[/tex]

       = 1

B) At x=-1

g(-1) = [tex]3(-1)^2-2(-1)+1[/tex]

      = 3 + 2 + 1

      = 6

C) At x=3

g(3) = [tex]3(3)^2-2(3)+1[/tex]

      = 27 -6 + 1

      = 22

D) At x= -x,

g(-x) = [tex]3(-x)^2-2(-x)+1[/tex]

       = [tex]3x^2+2x+1[/tex]

At x= (1 - t),

g(1 - t) = [tex]3(1 - t)^2-2(1 - t)+1[/tex]

          = [tex]3(1-2t+t^2)-2+2t+1[/tex]

          = [tex]3-6t+3t^2+2t-1[/tex]

          = [tex]3t^2-4t+2[/tex]

Thus, the values for the respective values of x in the given function are calculated by substituting those values in the given function.

Learn more about functions here:

https://brainly.com/question/2284360

#SPJ2