Respuesta :

6C2 = (6 x5)/(2 x 1) = 15 difference combinations

Answer:

15 different combinations

Step-by-step explanation:

Sara has six necklaces, but her mother will allow her to wear two at a time.

So we calculate different combinations of two necklaces by this formula:

[tex]\frac{n!}{r!(n-r)!}[/tex]

Where n = 6 and r = 2

Now put the values

[tex]\frac{6!}{2!(6-2)!}[/tex]

[tex]\frac{6\times 5\times 4\times 3\times 2\times 1}{2!(6-2)!}[/tex]

[tex]\frac{720}{2\times 1(4)!}[/tex]

[tex]\frac{720}{2\times 1(4\times 3\times 2\times 1)}[/tex]

[tex]\frac{720}{2(24)}[/tex]

[tex]\frac{720}{48}[/tex] = 15 combinations

Sara can wear 15 different combinations of two necklaces.