Respuesta :
Frequency of filling dolls = 10 / day
D/Q = 310 / year
Production cost c = $5.00
Therefore, the demand = 301 * 10 = 3,100 dolls
The Annual interest rate = 20%
Therefore, holding cost = 0.2 * 5 = $1 per year
a) F = 20, Q = D / F = 3,100 / 20 = 155
b) 100 = Q = SQRT[2AD/h] = SQRT[2a(3100)/1] = 78.74 SQRT[A]
Therefore, A = $1.61
c) Q = SQRT[2AD/h] = SQRT[2(10)(3100)/1] = 249
Sales = 10 dolls/days
Annual sales = D = 10 dolls/days × 310 days
             D = 3100 dolls / year
Wholesale cost = $5/doll
Holding cost = h = $5 * 20% = $1 / doll
A = Fixed cost
A) 3100 / 20 = 155 dolls / order Â
B) Optimal Order Quantity = 100 = [tex]\sqrt{2AD/h}[/tex]
                        100 = [tex]\sqrt{(2*3100*A)/1}[/tex]
                        A = $ 1.612
The implied fixed cost per doll is $ 1.612
C) Optimal Order Quantity = [tex]\sqrt{2AD/h}[/tex] Â = [tex]\sqrt{(2*3100*10)/1}[/tex] = 249 Dolls
The optimal order quantity is 249 dolls