Respuesta :
The reference angle for [tex] 120\degree[/tex] is [tex] 60\degree[/tex].
Recall that [tex] cot(120\degree) = \frac{1}{tan(120\degree)}[/tex]
This implies that [tex] cot(120\degree) = \frac{1}{tan(60\degree)}[/tex]
Recall also from [tex] 30\degree - 60\degreee - 90\degree[/tex] triangle that
[tex] tan(60\degree)=\sqrt(3)[/tex] and also since [tex] 120\degree [/tex] is the in the second quadrant, the tangent ratio is negative.
Putting all together we have
[tex] cot(120\degree) = \frac{1}{-\sqrt(3)}[/tex]
Rationalizing the denominator gives
[tex] cot(120\degree) = \frac{-\sqrt(3)}{3}[/tex]
Recall that [tex] cot(120\degree) = \frac{1}{tan(120\degree)}[/tex]
This implies that [tex] cot(120\degree) = \frac{1}{tan(60\degree)}[/tex]
Recall also from [tex] 30\degree - 60\degreee - 90\degree[/tex] triangle that
[tex] tan(60\degree)=\sqrt(3)[/tex] and also since [tex] 120\degree [/tex] is the in the second quadrant, the tangent ratio is negative.
Putting all together we have
[tex] cot(120\degree) = \frac{1}{-\sqrt(3)}[/tex]
Rationalizing the denominator gives
[tex] cot(120\degree) = \frac{-\sqrt(3)}{3}[/tex]
Answer:
The value of cot 120° is [tex]-\frac{\sqrt{3}}{3}[/tex].
Step-by-step explanation:
Consider the trigonometric identity:
[tex]cot(180-\theta)= -cot(\theta)[/tex]
Now use the above trigonometric identity:
[tex]cot(120)= cot(180-60)[/tex]
[tex]cot(180-60)= -cot(60)[/tex]
Now use the identity: [tex]cot(\theta)=\frac{1}{tan(\theta)}[/tex]
[tex]-cot(60)=-\frac{1}{tan(60)}[/tex]
Substitute the value of tan 60°.
[tex]-\frac{1}{tan(60)}=-\frac{1}{\sqrt{3}}[/tex]
Now rationalize the denominator gives us:
[tex]-\frac{\sqrt{3}}{3}[/tex]
Hence, the value of cot 120° is [tex]-\frac{\sqrt{3}}{3}[/tex].