Respuesta :

Given:

[tex]\frac{2tanx}{1-tan^2(x)} =\sqrt{3}[/tex]

We know the identity

[tex]tan(2x)= \frac{2tanx}{1-tan^2(x)}[/tex]

So we can equate [tex]tan(2x) =\sqrt{3}[/tex]

[tex]tan(x) =\sqrt{3}[/tex] when [tex]x=\frac{\pi}{3}[/tex]

Tan is positive in first and third quadrant

So we will get one move value for x

[tex]tan(x) =\sqrt{3}[/tex] when [tex]x=\frac{4\pi}{3}[/tex]

So for  [tex]tan(2x) =\sqrt{3}[/tex]

[tex]2x=\frac{4\pi}{3}[/tex]  and [tex]2x=\frac{\pi}{3}[/tex]

Divide by 2 on both sides

[tex]x=\frac{2\pi}{3}[/tex]  and [tex]2x=\frac{\pi}{6}[/tex]

To get general solution we add [tex]n\pi[/tex]

So option A  and option C are correct.