Respuesta :

Given the vector [tex]\vec{r}(a,b,c,d)[/tex].

Now taking the vertices of parallelogram asA [tex]\vec{a},B\vec{b},C\vec{c},D\vec{d}[/tex].

As we know to find the edges of parallelogram ABCD,we proceed as follows

[tex]\vec{AB}[/tex]= Position vector of B - Position vector of A

                             [tex]\vec{b}-\vec{a}[/tex]

[tex]\vec{BC}[/tex]= Position vector of C - Position vector of B

                            =[tex]\vec{c}-\vec{b}[/tex]

[tex]\vec{CD}[/tex]= Position vector of D - Position vector of C

                           = [tex]\vec{d}-\vec{c}[/tex]

[tex]\vec{DA}[/tex]= Position vector of A - Position vector of D

                       =[tex]\vec{a}-\vec{d}[/tex]

So, [tex]\vec{b}-\vec{a},\vec{c}-\vec{b},\vec{d}-\vec{c},\vec{a}-\vec{d}[/tex] are edges of parallelogram.

   



                             


                             


Ver imagen Аноним