In right triangle abc, angle a and angle b are complementary angles. the value of cos a is 5/13. what is the value of sin
b.

Respuesta :

cos is [tex]\frac{adjacent}{hypotenuse}[/tex]. So, if cos(a)= [tex]\frac{5}{13}[/tex] then use Pythagorean Theorem to determine the length of the "opposite" side.

5² + x² = 13²

25 + x² = 169

      x² = 144

       x = 12

Now that you know the length of the opposite side, you can plug it in for sin.

sin is [tex]\frac{opposite}{hypotenuse}[/tex]. So, sin(a) = [tex]\frac{12}{13}[/tex]

Now, if you switch so you are looking for sin(b), the cos and sin also switch.

cos(b) = sin(a) = [tex]\frac{12}{13}[/tex]

sin(b) = cos(a) = [tex]\frac{5}{13}[/tex]

Answer: sin(b) = [tex]\frac{5}{13}[/tex]

He’s right ^^**^^^^^^^^