The equilibrium fraction of lattice sites that are vacant in silver (ag) at 500°c is 0.5 à 10-6. calculate the number of vacancies (per meter cubed) at 500°c. assume a density of 10.35 g/cm3 for ag, and note that aag = 107.87 g/mol.

Respuesta :

Answer : The number of vacancies (per meter cube) = 2.889 × [tex]10^{24}m^{-3}[/tex]

Solution :  Given,

Atomic weight of silver (Ag), [tex]A_{Ag}[/tex] = 107.87 g/mol

Density of silver (Ag), [tex]\rho_{Ag}[/tex] = 10.35 [tex]g/cm^{3}[/tex] = 10.35 [tex]g/cm^{3}[/tex] × [tex]10^{6} cm^{3}/m^{3}[/tex] = 10.35 × [tex]10^{6} g/m^{3}[/tex]

Avogadro's number, [tex]N_{A}[/tex] = 6.022 × [tex]10^{23}[/tex] atoms/mol

Fraction of lattice sites that are vacant in silver = 0.5 × [tex]10^{-6}[/tex]

Formula used :

[tex]N_{Ag}=\frac{N_{Ag\times\rho_{Ag} } }{A_{Ag} }[/tex]

Where,

[tex]N_{Ag}[/tex] = Total number of lattice sites in Ag

[tex]N_{A}[/tex] = Avogadro's number

[tex]\rho_{Ag}[/tex] = Density of silver

[tex]A_{Ag}[/tex] = Atomic weight of silver

This problem is solved by two steps:

step 1 : First we calculate the total number of lattice sites in silver.

Now put all the values in above formula, we get

[tex]N_{Ag}=\frac{(6.022\times10^{23}atoms/mol)\times\ (10.35\times10^{6} g/m^{3})}{ 107.87 g/mol}[/tex]

         = 5.778 × [tex]10^{30}[/tex] atoms/[tex]m^{3}[/tex]

Step 2 : Now multiply the value of [tex]N_{Ag}[/tex] by the fraction of lattice sites that are vacant in silver,  0.5 × [tex]10^{-6}[/tex], we get the number of vacancies (per meter cube)

The number of vacancies (per meter cube) = 5.778 × [tex]10^{30}[/tex] atoms/[tex]m^{3}[/tex] × 0.5 × [tex]10^{-6}[/tex] = Answer : The number of vacancies (per meter cube) = 2.889 × [tex]10^{24}m^{-3}[/tex]